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Abstract

The Audio-Visual Acoustic Synthesis (AVAS) task aims to
model realistic audio propagation behavior within a spe-
cific visual scene. Prior works often rely on sparse im-
age representations to guide acoustic synthesis. However,
we argue that this approach is insufficient to capture the
intricate physical properties of the environment and may
struggle with generalization across diverse scenes. In this
work, we review the limitations of existing pipelines and
address the research question: Can we leverage physi-
cal audio-visual associations to enhance neural acoustic
synthesis? We introduce Physics-Integrated Audio-Visual
Acoustic Synthesis (PI-AVAS or m-AVAS), a novel frame-
work designed with two key objectives. i) Generalization:
We develop a vision-guided audio simulation framework
that leverages physics-based sound propagation. By ex-
plicitly modeling vision-grounded geometry and sound rays,
our approach achieves robust performance across diverse
visual environments. ii) Realism: While simulation-based
approaches offer generalizability, they often compromise on
realism. To mitigate this, we incorporate a second stage for
data-centric refinement, where we propose a flow matching-
based audio refinement model to narrow the gap between
simulation and real-world audio-visual scenes. Extensive
experiments demonstrate the effectiveness and robustness of
our method. We achieve state-of-the-art performance on the
RWAVS-Gen, RWAVS, and RAF datasets. Additionally, we
show that our approach can be seamlessly integrated with
existing methods to significantly improve their performance.

1. Introduction

The audio-visual acoustic synthesis task, as introduced by
Chen et al. [6] and Liang et al. [21], aims to generate re-
alistic binaural audio for new speaking and listening posi-
tions based on vision data. This task presents unique chal-
lenges, including synthesizing realistic binaural audio and
achieving novel-view synthesis. Various approaches have
been proposed to address this problem [6, 9, 21, 22, 26, 43].
NAF [26] simulates sound propagation within a scene us-
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Figure 1. An intuitive comparison between audio simulation ap-
proaches, neural rendering approaches, and our m-AVAS. Physics-
based approaches generalize well but lack realism, while neural
rendering produces high-quality results but struggles with novel
sound sources. Our two-stage method achieves both realism and
generalization using the physics-based sound simulation and au-
dio refinement model.

ing a local feature grid and an implicit decoder. INRAS
[43] divides sound modeling into a three-stage implicit neu-
ral field. Chen et al. [6] present a vision-conditioned audio
transformation network to synthesize audio for new listen-
ing positions. Liang et al. [21] design a NeRF-like system
to jointly render audio and visual content.

While these methods produce plausible results for fixed
sound sources, they struggle to generalize to novel sound
sources due to inadequate modeling of sound propagation.
Sound propagation is influenced by various environmental
factors, including the positions of the sound emitter and re-
ceiver, the room geometry, and the material properties of
surfaces. The complex interactions among these physical
properties impact the propagation behavior in a given envi-
ronment. To address these factors, existing methods typi-
cally learn from sparse images implicitly within neural net-
works. Although this implicit modeling of visual infor-
mation can support audio synthesis, it falls short of accu-
rately capturing the necessary physical properties that gov-
ern sound propagation. In other words, the limited image-
audio pairs do not provide sufficient information to infer the



complete room geometry and scene layout. Consequently,
these models experience significant performance degrada-
tion when confronted with novel sound sources.

Recognizing the limitations of implicit learning ap-
proaches in capturing physical audio-visual associations,
we investigate the question: Can we leverage explicit phys-
ical priors in audio-visual modeling to bridge this gap? In
this paper, we propose a novel two-stage method to address
this challenge. In the first stage, we design a vision-guided
sound simulation framework that improves generalization
for novel emitter and receiver positions. We begin by re-
constructing a 3D mesh environment from a set of images
using NeRF [29] or Gaussian Splatting [18]. This scene
mesh effectively captures the geometry and structure of the
environment, which are critical factors influencing sound
propagation. For a given sound source and receiver pair, we
model sound propagation within the mesh scene by treat-
ing sound as a ray [36]. This physics-based simulation ap-
proach enables robust generalization to new positions, even
in complex environments.

While explicit modeling of scenes from visual input pro-
vides a significant advantage in generalization, it falls short
of achieving realistic audio rendering [4, 46] for several
reasons. (1) The material properties of each bounce sur-
face, such as absorption, scattering, and transmission, are
not fully considered. (2) The simulation traces only a lim-
ited number of sound rays due to computational restrictions,
and low-frequency values are imprecise. (3) Background
noise effects are not modeled. To address these issues, we
propose our second stage to enhance the realism of the sim-
ulated sound. We utilize a conditional flow matching model
[25, 47] to refine the coarsely simulated sound. With the
powerful generative capability of flow-matching models,
we can effectively correct errors from the first stage. An
intuitive comparison between traditional audio simulation
methods, neural rendering approaches, and our proposed
method is presented in Fig. 1.

We conduct extensive experiments on three real-world
datasets: RWAVS-Gen, RWAVS [21], and RAF [9] datasets.
RWAVS-Gen and RWAVS datasets measure the waveform
sound generation quality, and the RAF dataset assesses the
room impulse response rendering performance. The exper-
imental results demonstrate that our method exhibits strong
generalization and can be readily applied to novel sound
sources. We also show that our method can be integrated
into existing approaches to improve their generalization per-
formance. In conclusion, our contributions are as follows:

* We introduce a novel physics-integrated audio-visual
acoustic synthesis framework to generate realistic audio
content at novel positions based on visual information.

* We propose a vision-guided audio simulation method to
enhance generalization for novel sources and listeners.

* We design a flow matching-based audio refinement model

to bridge the gap between simulation sounds and real-
world recordings.

* Our experiments highlight the limitations of existing ap-
proaches, demonstrate the advantages of our method, and
show the applicability of our model.

2. Related Work

Our work is closely related to areas such as vision-informed
audio generation and flow matching models. We discuss
each area and related work in the following section.

2.1. Vision-Informed Audio Generation

Vision-informed audio generation focuses on synthesizing
audio based on visual inputs like images, videos, meshes,
and poses. Many studies propose neural network-based au-
dio generation pipelines [5, 6, 12, 15, 21, 23, 26, 27, 32, 33,
43, 52]. For instance, 2.5D Visual Sound [12] employs a
U-Net [34] to synthesize binaural audio conditioned on an
image, while Chen et al. [5] introduce a cross-modal trans-
former [49] to generate audio that matches room acoustics
informed by an image. Some researchers have also devel-
oped video-guided audio generation methods, such as Diff-
foley [27], and Movie Gen [32], which produce synchro-
nized audio by considering temporal cues in videos.

Another key area of vision-informed audio generation is
pose-conditioned audio rendering, which is the focus of this
paper. Inspired by Neural Radiance Field (NeRF) [29], sev-
eral works [1, 2, 6, 7, 11, 14, 20, 21, 26, 33, 43] explore
novel-pose audio synthesis by learning an audio field. Chen
et al. [6] introduce a CNN-based network for transforming
audio to synthesize sound at novel poses, while Liang et al.
[21] design a NeRF-like system to jointly generate audio
and visual content conditioned on poses. Although these
pose-conditioned approaches generate plausible results for
fixed sound sources, they face challenges with novel sound
sources. In comparison, our method can easily render sound
for new sources, thanks to our vision-guided audio simula-
tion approach with physics integration.

2.2. Flow Matching Models

Deriving from Continuous Normalizing Flows (CNFs) [8],
Lipman et al. [25] introduce Flow Matching to train CNFs
in a simulation-free manner. Flow Matching, especially Op-
timal Transport Flow Matching [28], models the transfor-
mation between noise and data samples in a simpler and
more efficient way than diffusion models [13, 41], leading
to more stable training and better performance. Tong et al.
[47] extend Flow Matching to arbitrary distribution trans-
formations, including probability paths between different
data distributions [24]. Inspired by this, we treat our sim-
ulated audio as one distribution and the target binaural au-
dio as another distribution and use Flow Matching to refine
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Figure 2. Overview of our approach. Our framework m-AVAS consists of two stages: the vision-guided audio simulation and the audio
refinement with flow matching. In the first stage, we conduct 3D scene reconstruction and simulate sound propagation between a speaker
and a listener in the mesh scene. In the second stage, we refine the coarsely simulated sound with a flow matching model, enhancing the

quality of the synthesized sound.

the simulation results. The audio refinement network effec-
tively corrects simulation errors from the first stage.

3. Method

Our method aims to boost the performance of audio-visual
acoustic synthesis models for novel sound sources. We de-
sign a novel Physics-Integrated Audio-Visual Acoustic Syn-
thesis model (PI-AVAS or 7m-AVAS) with two stages. In the
first stage (Sec. 3.1), we introduce a vision-guided audio
simulation approach that integrates the physical properties
of sound propagation. In the second stage (Sec. 3.2), we
propose a conditional flow matching model that refines the
prediction results from the first stage, improving the quality
of audio generation. Additionally, we introduce a data aug-
mentation strategy in Sec. 3.3 to facilitate model training.
The complete pipeline is illustrated in Fig. 2.

3.1. Vision-Guided Audio Simulation

To enhance the generalization for audio sources and re-
ceivers in novel positions, we design a vision-guided audio
simulation framework.

3D Scene Mesh Extraction. We aim to reconstruct meshes
of an audio-visual scene from input images in the first step
(see the second subfigure in Fig. 2). Given a set of images
and their corresponding camera poses, we utilize Neural
Radiance Field (NeRF) [29, 45] or 3D Gaussian Splatting
[18] to learn a neural representation of the given environ-
ment. Then, we convert the NeRF model weights or Gaus-
sian points to 3D point clouds, which are a more compatible
data format. Once the point clouds are reconstructed, we
use Poisson surface reconstruction [17] to generate meshes
of the audio-visual scene. Empirically, we do not observe a
noticeable difference between the reconstructed 3D meshes
of NeRF and Gaussian Splattings. We leave a detailed com-
parison between NeRF, Gaussian Splatting, and traditional
Structure-from-Motion approaches [38] for future work, as

this is not the main focus of our paper.
Physics-Integrated Sound Simulation. After we generate
the meshes of an audio-visual scene, we can simulate the au-
dio propagation between arbitrary sound emitters and sound
receivers in this scene (see the third subfigure in Fig. 2).
Specifically, for a pair of sound source tx and sound re-
ceiver rx, we treat the sound emitted by the source ¢, € R”
(n is the audio length) as a collection of rays, tracing each
ray’s interaction with the room’s meshes [3, 40]. We de-
note the energy received at the receiver from the transmitter
as E(tx — rx), from which we omit the time delay vari-
able for simplicity. We model both direct propagation and
indirect reflection to calculate the received energy:

E(tx —» rx) = BEq(tx = 1x) + Ejq(tx = rx). (1)

Direct propagation Indirect reflection

E4(tx — rx) is the energy of direct propagation and
E;q(tx — rx) is the reflected energy defined as

Ei4(tx = rx) = / E(w — tx) G(w > tx)
¢ Energy Geometry (2)

plw = tx = 1x) * M (w ¢ tx) dw,

Material property Scene size

where () is the entire mesh space, w is an area of (2,
M (w <> tx) measures energy absorption and time delay,
G(w <> tx) means the energy dispersion and occlusion dur-
ing sound propagation, p(w — tx — rx) represents the
acoustic property of each bounce surface, and the asterisk *
is the convolution operation.

Eq. (1) can be converted to an infinite sum of integrals
and solved with the Neumann series expansion [19]. We
then calculate the impulse response based on the accumu-
lated energy E and convolve that with the sound source to
generate the simulated sound. To improve the realism of the
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Figure 3. Visualization of the audio refinement process with the flow matching model. The flow matching model learns a vector field that
gradually transforms a simulated sound Zsim to a ground-truth sound .

simulated sound, we also apply the Head-Related Transfer
Function (HRTF) to generate binaural audio g, € R2xn
based on the listener’s head direction. Because it is chal-
lenging to estimate material property solely based on visual
information [10, 39], we assign default material coefficients
to all surfaces.

So far, we simulate sound propagation between the
sound source and the receiver using visual information ob-
tained from a set of images. Since this approach integrates
the physical properties of sound propagation, it generalizes
well to novel sound sources and listeners.

3.2. Audio Refinement With Flow Matching

Although the vision-guided audio simulation approach of-
fers robustness for novel poses, there is a noticeable fidelity
gap between simulated and recorded sounds [4, 46] as men-
tioned in the introduction section, e.g., the material property
is not correctly modeled. Therefore, we introduce our sec-
ond stage to further enhance the quality of the generated
sound zgj,. We propose a flow matching model to refine
and improve the simulated audio. We illustrate the audio
refinement process with the flow matching model in Fig. 3.
Flow Matching Formula. Specifically, we treat the
simulated sound g, € R2?*™ as one data distribu-
tion N (z|Zsim,0%I) and the recorded sound (ground-
truth sound) z,, € RZ*™ as another data distribution
N (x|x,x,0%I), where o is a predefined standard deviation.
We model the sound refinement process as a transfer be-
tween these two distributions. We design the following
time-dependent probability path p; : [0,1] x R™ — Rsq:

pi(x) = N (@|tzr + (1 — t)Dgim, 021), 3)
where po(l’) = N(‘T|xsim7 0—21)’ Pl(x) = N((E|xrxu 0—2[)’
and time step ¢ € [0, 1]. We define the time-dependent flow
Pe(x) : [0,1] x R™ — R™ as follows:

Yi(x) =tk + (1 — t)Tgim + 0, 4)
where ¢ is sampled from a standard Gaussian distribution
N(0,1). According to the definition of vector fields, we
can derive the vector field v; : [0, 1] x R™ — R”™ using the
flow defined in Eq. (4):

vt(wt(x)) = 71/}1&(%) = Tyx — Tsim- (5)

Then we train a deep neural network u; (¢ (), Zix, p; 0)
to fit the vector field defined in Eq. (5), where 6 is the
trainable parameters of a neural network, xy is the source
sound, and p is the pose information of sound source tx and
listener rx. The training objective is
Lem(0) = Egg(a),q1 a),¢ 10t (e (), o, 3 0) = (@ex — wsim) || -
(0)
We provide pseudo-code for training the audio refinement
model in the appendix. In our experiments, we use Short-
time Fourier transform (STFT) to transform both the target
Zrx — Tsim and predicted u (¢ (2), Tex, p; 0) vector fields
from a time space to a time-frequency space and calculate
the L2 distance as the training loss.

After training, we utilize the network for audio refine-
ment. Given a simulated sound xg,,,, we generate an en-
hanced sound z, by solving the ordinary differential equa-
tion:

d
gﬁjt(fﬂ) = Ut(wt(x),xtx,p; 9);

1/}0 (LL') = Zsim-

The solution v () is the synthesized binaural audio. In this
paper, we study one first-order solver (Euler solver) and two
second-order solvers (Midpoint solver and Heun solver).
We compare different solvers and provide the pseudo-code
of inference in the appendix.

Audio Refinement Network. In Fig. 4 (a), we show the
architecture of our network that is designed to approxi-
mate the vector field v;(z). Given an intermediate sound
¢ (x) sampled from Eq. (4), we concatenate it with the
source sound zy, emitted by the loudspeaker. The con-
catenated sound is first fed to a two-layer convolutional en-
coder to enrich the channel dimension and then passed to
a stack of multi-scale gated convolution blocks. To condi-
tion the vector field prediction on the source and listener’s
poses p and time step ¢, we first project them into a high-
frequency space using Random Gaussian Fourier Embed-
ding (RGFE) [44], followed by MLPs. The resulting em-
beddings form the flow matching conditions ¢, which are
then passed to the multi-scale gated convolution blocks.
Each multi-scale gated convolution block uses condition ¢
to adjust the sound features f;_; and predicts the next sound
features f; and a skip feature s;. Finally, we combine all

(7
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Figure 4. Model architecture. (a) shows the audio refinement network. Given an intermediate sound ;(x) and a source sound Zx, we
concatenate them and pass them through an encoder followed by a series of multi-scale gated convolution blocks. We use timestep ¢ and
pose p as conditions by encoding them with RGFE and MLPs. All skip features s; are gathered and used to predict the vector field u;. (b)
illustrates the multi-scale gated convolution block. We design a gate operator to filter and control the intermediate features f;.

skip features {sg, $1,...,5—1} together, where L is the
number of blocks, and use a two-layer convolutional de-
coder to predict the vector field u;.

We present our multi-scale gated convolution block in
Fig. 4 (b). Inspired by WaveNet [48] and ViGAS [6], we
design a gate operator to filter and control intermediate fea-
tures. Given a feature f;_; from the previous block, we uti-
lize dilated convolution layers (D-Conv) to learn meaning-
ful features D1 (f;—1) and Da(f;—1), where D; and D are
dilated convolution layers. We also use pointwise convolu-
tion layers (P-Conv) to extract condition features P; (¢) and
P»(c), where P, and P, are pointwise convolution layers.
We apply the gated operator using the following equation:

y = tanh(D1(fi—1)+ Pi(c))®a(Da(fi—1)+ Pa(c)), (8)

where ® means Hadamard product.

Then we feed y through a pointwise convolution layer
to form the residual and add it to the input feature f;_; to
generate the new feature f;. We feed y through another
pointwise convolution layer to generate a skip feature s;.
Since we gradually increase the dilation size of each block,
we name it the multi-scale gated convolution block.

3.3. Data Augmentation

Data scarcity presents a challenge when we train audio-
visual acoustic synthesis models, as each scene is typically
recorded in a 10 to 20-minute video. This yields only 600
to 1200 samples (at 1 fps) per scene for training. To facili-
tate training, we propose a data augmentation strategy (see
Fig. 5). Given that the video captures continuous camera
movement, we approximate the camera’s entire trajectory
by interpolating between discrete training poses (shown as
orange poses in the figure). We then shift each training pose
randomly along this trajectory by up to one second forward
or backward. These shifted positions serve as augmented

Movement
i Trajectory

Figure 5. Data augmentation. We randomly shift each training
pose, represented in orange, along the interpolated camera trajec-
tory by up to one second forward or backward. The shifted poses,
shown in blue, serve as augmented poses to aid in model training.

poses (blue poses), and we pair them with temporally cor-
responding audio clips as augmented sound samples.

4. Experiments

4.1. Generalization Evaluation

We first evaluate the generalization ability of various meth-
ods to novel sound sources.

Experiment Setup. We use the Real-World Audio-Visual
Scene (RWAVS) dataset [21] to benchmark our method.
The RWAVS dataset captures multimodal data, including
the source position, camera poses, mono source sounds,
and binaural received sounds for each scene. The dataset
captures data from diverse environments, such as offices,
multi-room houses, apartments, and outdoor spaces. For
each scene, the original RWAVS dataset contains multiple
videos with varying sound source locations. To examine
generalization issues in existing approaches, we design a



Table 1. Quantitative comparison with state-of-the-art methods on the RWAVS-Gen dataset using the generalization evaluation setup. We
also show the inference speed and the model size of all methods. We highlight the best result in bold.

Office House Apartment Outdoors Overall .
Methods MAG, ENV| MAG, ENV| MAG, ENV| MAG, ENV| MAG| ENv| >peed(ms) Size(MB)
INRAS [43] 2126 0.182 3.605 0220 4535 0232 2058 0.57 3.081 0.198 2.9 0.79
NAF [26] 2275 0.81 2873 0.186 4878 0231 1575 0.35 2900 0.183 46 0.74
ViGAS [6] 2137  0.183 3.878 0213 3946 0221 1967 0.154 2982  0.193 12.8 9.72
AV-NeRF [21] 2086 0.180 3759 0221 4520 0230 2308 0.165 3.168 0.199 2.1 3.04
7-AVAS (Ours) 1.856 0.163 1946 0.140 3.898 0.209 1326 0125 2257 0.159 10.4 5.62
N JMMTR Camel ) et Chane generalization capability of our physics-integrated model to
" ' " o o o novel sound sources.
INRAS ety iAot Inference Speed. We test the inference speed of differ-
ent models to render one second of binaural audio with one
ViGAS Wi i ik Aok U i . .
OAS = . : RTX 4090 GPU and report the results in the rightmost col-
AV-NeRF s " p o » umn in Tab. 1. Since our approach involves audio simula-
tion (2.1ms) and requires 4 steps to complete flow matching
' W“'”“‘WJ}' lw.mml irmmmmsnr n«ll' N,MQAJ MM . . .. .
ours "W I u . W MW "\ “ estimation (8.3ms), it is slower than some methods that di-

e o

Figure 6. Visualization of synthesized binaural sounds for novel
sound sources and listeners.

new evaluation setup: in each environment, we select one
video as training data, with the remaining videos used for
evaluation. This setup allows us to effectively assess how
well existing methods generalize to new sound source loca-
tions within the same environment. We present an example
in the appendix. We denote this new benchmark as RWAVS-
Gen to distinguish it from the original RWAVS benchmark.

Following AV-NeRF [21], we select NAF [26], INRAS
[43], ViGAS [6], and AV-NeRF as our baselines. NAF
models sound propagation within a scene by using a lo-
cal feature grid and an implicit decoder. INRAS disentan-
gles sound modeling through a three-stage implicit neural
field. ViGAS predicts sound at a new location by lever-
aging audio-visual features from source viewpoints. AV-
NeRF constructs a multi-modal neural field to condition au-
dio modeling on 3D visual scene context.

We choose magnitude distance (MAG) [51] and enve-
lope distance (ENV) [30] metrics to evaluate audio quality
following RWAVS [21].

Quantitative Results. We compare our model with exist-
ing approaches on the RWAVS-Gen dataset and report their
generalization performance in Tab. 1. All methods show
better audio rendering performance in the office and the out-
door scenes while causing worse audio generation in the
house and apartment scenes because the office is a classic
shoebox environment with four parallel walls and the out-
door scene is an open space without occlusion. Our model
achieves the best performance across all four environments,
achieving the lowest metric losses, with 2.257 MAG and
0.159 ENV. This demonstrates the strong robustness and

rectly output sound. However, (1) our approach still meets
the real-time requirement (16.7ms for 60 FPS and 33.3ms
for 30 FPS), meaning it causes no noticeable delay in real-
world audio applications. (2) There are many successful
works we can use to reduce inference time without perfor-
mance degradation, such as consistency models [42] and ad-
versarial diffusion distillation [35]. If we reduce the number
of steps to 1, our method needs only 4.2 ms for inference.
Qualitative Comparison. We visualize the generated
sounds of different approaches in Fig. 6 for an intuitive
comparison. As depicted, existing methods encounter chal-
lenges when applied to novel sound sources, resulting in
inaccurate sound volume. In contrast, our physics-based
approach effectively considers the changes in sound source
locations and accurately produces binaural audio.

4.2. Standard Evaluation

We then compare the rendering performance of our 7-AVAS
model with other methods using standard benchmarks.
Experiment Setup. We use the original RWAVS and Real
Acoustic Field (RAF) datasets to benchmark our approach.
For the RWAVS dataset, we make no modification to the
benchmark and use the original setup to test our model. The
RAF dataset is a real-world room impulse response dataset
that densely captures real room acoustic data. It provides
impulse response signals of an office environment in two
conditions: empty and furnished. It allows to study the dif-
ference in acoustic fields introduced by furniture.

Besides the baselines used in the RWAVS-Gen exper-
iment, we include state-of-the-art approaches on RWAVS
and RAF datasets to augment our experiment. AV-GS [1]
introduces an audio-visual Gaussian Splatting method that
explicitly represents a scene for acoustic synthesis. SOAF
[11] designs an occlusion-aware acoustic field. AVR [20]
utilizes the volume rendering technique to generate acous-
tic impulse responses.



Table 2. Quantitative comparison with state-of-the-art methods on the original RWAVS dataset. We highlight the best-performing result in

bold and underline the second-best result.

Methods Office House Apartment Outdoors Overall
MAG| ENV] MAG| ENV] MAG| ENV| MAG| ENV| MAG| ENV]
Mono-Mono 9269 0411 11.889 0424 15120 0474 13957 0470 12559 0.445
Mono-Energy 1.536  0.142 4307 0.180 3911 0.192 1.634 0.127 2.847 0.160
Stereo-Energy 1511 0139 4301 0180 3.895 0.191 1.612 0.124 2.830 0.159
INRAS [43] 1.405 0.141 3511 0.182 3421 0201 1502 0.130 2460 0.164
NAF [26] 1244  0.137 3259 0178 3345 0.193 1.284 0.121 2.283  0.157
ViGAS [6] 1.049 0.132 2502 0.161 2600 0.187 1.169 0.121  1.830  0.150
AV-NeRF [21] 0930 0129 2,009 0.155 2230 0.184 0.845 0.111 1.504 0.145
AV-GS [1] 0861 0.124 1970 0.152 2.031 0.177 0.791 0.107 1417 0.140
SOAF [11] 0.828 0.126 1951 0.153 2097 0.182 0.770 0.109 1411 0.142
m-AVAS (Ours) 0.674 0.109 1.992 0.149 2.041 0.173 0.785 0.106 1373 0.134

Table 3. Quantitative comparison with state-of-the-art methods on the RAF dataset. We highlight the best-performing result in bold and

underline the second-best result.

Methods RAF-Furnished RAF-Empty

T60, C504 EDT| Amp.] Phasel Env. T60]/ C50/ EDT| Amp.l Phase] Env.]
AAC-nearest 13.0 341 73.5 1.09 1.60 483 130 341 73.3 1.09 1.60 4.83
AAC-linear 124 3.65 90.2 0.99 1.60 381 131 325 715 1.10 1.59 5.22
Opus-nearest 144 378 803 1.19 1.60 535 133 425 100.6 1.16 1.59 4.58
Opus-linear 13.1 355 718 1.47 1.60 574 1277 394 955 0.95 1.59 4.26
NAF [26] 7.1 098  20.6 0.93 1.62 5.34 8.0 122 263 0.85 1.62 4.67
INRAS [43] 6.9 1.08 214 0.96 1.62 6.43 7.6 1.21 25.8 0.88 1.62 4.72
AVR [20] 50 09 179 075 158 452 55 104 233 0.67 158  3.96
m-AVAS (Ours) 4.8  0.81 16.3 0.24 1.58 4.95 5.0 0.91 19.3 0.26 1.56 4.42

We use MAG and ENV metrics to measure performance
on the RWAVS dataset. Following AVR [20], we choose
T60, C50, EDT, Amplitude (Amp.), Phase, and Envelope
(Env.) to assess performance on the RAF dataset. T60, C50,
and EDT are the most important metrics for measuring im-
pulse response quality by analyzing energy decay. Ampli-
tude and Phase metrics evaluate the impulse response in the
time-frequency domain. The Envelope metric evaluates the
impulse response in the time domain.

RWAVS Results. As shown in Tab. 2, we compare our
method with existing baselines on the original RWAVS
dataset. Mono-Mono, Mono-Energy, and Stereo-Energy
are non-learnable methods that generate binaural audio by
scaling mono audio using estimated energy values. Other
methods are neural network-based approaches, such as AV-
GS [1] and SOAF [11]. Our approach outperforms both
non-learnable and learnable approaches, setting new state-
of-the-art performance on the RWAVS dataset. The re-
sults demonstrate that our m-AVAS model achieves plausi-
ble novel-view audio synthesis quality.

RAF Results. We present our 7-AVAS’s performance on
the RAF dataset in Tab. 3. AAC [16] and Opus [50] are
traditional audio encoding methods. “Nearest” and “linear”
refer to different interpolation modes. AVR [20] is the state-
of-the-art method on this dataset. Our method surpasses

AVR on most metrics and performs on par with it on the
Envelope metric. Considering that AVR takes 24 hours to
converge while our model trains in 5 hours, our m-AVAS
exhibits a better trade-off between training time and impulse
response generation quality.

4.3. Applicability Of Our Simulation Method

The generalization capability of our method is empowered
by our first stage, the vision-guided audio simulation mod-
ule (Sec. 3.1). We find that this module not only improves
the performance of our flow matching model but can also be
applied to existing neural synthesis approaches to enhance
their generalization ability. By replacing their input source
audio with our simulated audio, we integrate our vision-
guided audio simulation module into their framework. Ex-
periment results shown in Tab. 4 demonstrate the applica-
bility of our approach, with overall performance improve-
ments across most methods. For example, we improve the
MAG metric of the AV-NeRF model by 0.772 and reduce
the ENV loss by 0.036.

4.4. Ablation Studies

We provide a thorough ablation study using the RWAVS-
Gen dataset, with results shown in Tab. 5.



Table 4. Applicability of our method. We apply our simulation method to other approaches to improve their generalization ability (denoted
as “w/ sim”). We conduct experiments on the RWAVS-Gen dataset. The performance improvement is marked with a green triangle

Methods Office House Apartment Outdoors Overall
MAG, ENV] MAG| ENV| MAG| ENV| MAG| ENV] MAG] ENV]
INRAS [43] 2126 0.182  3.605 0.220 4.535 0232 2058 0.157 3.081 0.198
o wisim 2125 0179 2329 0157 4907 0246 1.691  0.136 2763 (v 0.318) 0.180(v0018)
NAF [26] 2275 0181 2873 0.186 4.878  0.231 1.575  0.135 2.900 0.183
o wisim 2203 0184 2214 0.154 4925 0241 1556  0.131 2.724(v0.176) 0.178 (Vv 0.050)
ViGAS [6] 2137 0.183 3878 0213 3946 0221 1967 0.154 2.982 0.193
o Wisim 2074 0173 2317  0.137 3683 0206 1679 0.135 2438(v0.544) 0.163 (v 0.030)
AV-NeRF [21] 2.086 0.180 3.759 0.221 4520 0.230 2308 0.165 3.168 0.199
w/ sim 2014 0.174 1946 0.136 4374 0221 1250 0.122 2396(v 0.772) 0.163 (v 0.036)

Table 5. Ablation Studies. We conduct a comprehensive ablation study to verify the effectiveness of our proposed method. The term
“pra+HRTF” refers to substituting our vision-guided acoustic simulation approach with pyroomacoustics and HRTF. “Regression”
denotes training our audio refinement convolutional network without the flow matching loss.

Methods Office House Apartment Outdoors Overall
Simulation Refinement Augmentation MAG| ENV] MAG| ENV| MAG| ENV| MAG] ENV] MAG| ENV]
pra[37]+HRTF[31] 4259 0226 5264 0227 8762 0.288  3.454 0203 5435 0.236
v 2.609 0.186 2753 0.170 7.360 0.268 3.031 0.177 3.938  0.200
Regression 1.904 0.167 3.826 0204 4.033 0219 1.612 0.143 2.844 0.183
v 1.880 0.166 3.144 0.198 4.209 0207 1577 0.138 2702 0.177
v v 1.856 0.163 2.191 0.148 3.898 0.209 1.496 0.134 2360 0.164
v v v 2.002 0.169 1946 0.140 4.071 0220 1326 0.125 2336 0.164

Vision-Guided Audio Simulation. First, we test the im-
portance of our vision-guided audio simulation module
(Sec. 3.1). We use pyroomacoustics [37] plus HRTF
[31] as a baseline, which does not incorporate vision infor-
mation. In this setup, we create a shoebox environment and
use pyroomacoustics to estimate the room impulse re-
sponse. We convolve the impulse response and the input
audio to render mono audio at the target location. We then
apply HRTF to generate binaural audio. Compared with
this baseline, our module consistently outperforms it (see
the first and the second rows), showing the importance of
vision information in audio simulation.

Audio Refinement Network. We proceed to evaluate our
second stage — the audio refinement flow matching model
(see Sec. 3.2). To establish a baseline, we remove the flow
matching training objective from the second stage and train
the audio refinement network with a regression loss func-
tion, labeled as “Regression” in the table. By incorporat-
ing the flow matching training objective, we achieve more
precise audio refinement performance (compare the third
and fourth rows). We hypothesize that the flow matching
formula decomposes the challenging one-step estimation
into several simpler steps, thereby progressively refining the
simulated sound. By combining our first and second stages
(see the fifth row), we achieve improved performance be-
yond either stage alone, demonstrating (1) the realism lim-
itations of simulation-only approaches, (2) the generaliza-

tion challenges of neural rendering-only methods, and (3)
the advantages of our two-stage approach.

Augmentation Strategy. We also assess the impact of our
data augmentation strategy (refer to the last row). By en-
hancing the audio refinement training with additional data,
we achieve lower metric losses for both house and outdoor
scenes; however, we observe no improvement for office and
apartment scenes. Consequently, we apply data augmenta-
tion only to house and outdoor scenes.

5. Conclusion

In this paper, we study the limitations of existing ap-
proaches to the audio-visual acoustic synthesis problem.
We design a two-stage, physics-integrated audio-visual
acoustic synthesis framework to enhance both realism and
generalization capabilities. The first stage of our framework
is a vision-guided audio simulation module, followed by a
flow-matching-based audio refinement module. To mitigate
data scarcity in this task, we also propose a data augmen-
tation strategy. Experimental results show the effectiveness
of our proposed approach, achieving new state-of-the-art re-
sults on the RWAVS-Gen, RWAVS, and RAF datasets. We
further show how our physics-integrated method improves
existing approaches in terms of generalization.
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